
Throughput Based Energy Efficiency
Modeling of Lock-Free Data Structures

Aras Atalar, Anders Gidenstam, Paul Renaud-Goud
and Philippas Tsigas

Chalmers University of Technology

qwwe



MotivationPp Pp

I Why multi-core:
I Heat dissipation, memory bottleneck, physical limits
I Multi-core challenges: Synchronization, load balance, etc.

I Lock-free Data Structures:
I Lock-Freedom: Non-blocking system-wide progress guarantee
I Optimistic Conflict Control
I Limitations of their lock-based counterparts: deadlocks, convoying

and programming flexibility
I High scalability

I Major optimization criterion (road to Exascale, battery
lifetime for embedded systems, etc.) decomposed into:

I Power
I Throughput (ops/unit of time)

Aras AtalarThroughput Based Energy Efficiency Modeling of Lock-Free Data Structures 2 19



MotivationPp Pp

I Why multi-core:
I Heat dissipation, memory bottleneck, physical limits
I Multi-core challenges: Synchronization, load balance, etc.

I Lock-free Data Structures:
I Lock-Freedom: Non-blocking system-wide progress guarantee
I Optimistic Conflict Control
I Limitations of their lock-based counterparts: deadlocks, convoying

and programming flexibility
I High scalability

I Major optimization criterion (road to Exascale, battery
lifetime for embedded systems, etc.) decomposed into:

I Power
I Throughput (ops/unit of time)

Aras AtalarThroughput Based Energy Efficiency Modeling of Lock-Free Data Structures 2 19



MotivationPp Pp

I Why multi-core:
I Heat dissipation, memory bottleneck, physical limits
I Multi-core challenges: Synchronization, load balance, etc.

I Lock-free Data Structures:
I Lock-Freedom: Non-blocking system-wide progress guarantee
I Optimistic Conflict Control
I Limitations of their lock-based counterparts: deadlocks, convoying

and programming flexibility
I High scalability

I Major optimization criterion (road to Exascale, battery
lifetime for embedded systems, etc.) decomposed into:

I Power
I Throughput (ops/unit of time)

Aras AtalarThroughput Based Energy Efficiency Modeling of Lock-Free Data Structures 2 19



SettingsPp Pp

Output: Data structure throughput, i.e. number of successful operations
per unit of time

Procedure AbstractAlgorithm
1 Initialization();
2 while ! done do
3 Parallel_Work(); /* Application specific code, conflict-free */
4 while ! success do
5 current ← Read(AP);
6 new ← Critical_Work(current);
7 success ← CAS(AP, current, new);

Inputs of the analysis:
I Platform parameters: CAS and Read Latencies, in clock cycles
I Algorithm parameters:

I Critical Work and Parallel Work Latencies, in clock cycles
I Total number of threads

Aras AtalarThroughput Based Energy Efficiency Modeling of Lock-Free Data Structures 3 19



SettingsPp Pp

Output: Data structure throughput, i.e. number of successful operations
per unit of time

Procedure AbstractAlgorithm
1 Initialization();
2 while ! done do
3 Parallel_Work(); /* Application specific code, conflict-free */
4 while ! success do
5 current ← Read(AP);
6 new ← Critical_Work(current);
7 success ← CAS(AP, current, new);

Inputs of the analysis:
I Platform parameters: CAS and Read Latencies, in clock cycles
I Algorithm parameters:

I Critical Work and Parallel Work Latencies, in clock cycles
I Total number of threads

Aras AtalarThroughput Based Energy Efficiency Modeling of Lock-Free Data Structures 3 19



SettingsPp Pp

Output: Data structure throughput, i.e. number of successful operations
per unit of time

Procedure AbstractAlgorithm
1 Initialization();
2 while ! done do
3 Parallel_Work(); /* Application specific code, conflict-free */
4 while ! success do
5 current ← Read(AP);
6 new ← Critical_Work(current);
7 success ← CAS(AP, current, new);

Inputs of the analysis:
I Platform parameters: CAS and Read Latencies, in clock cycles
I Algorithm parameters:

I Critical Work and Parallel Work Latencies, in clock cycles
I Total number of threads

Aras AtalarThroughput Based Energy Efficiency Modeling of Lock-Free Data Structures 3 19



SettingsPp Pp

Output: Data structure throughput, i.e. number of successful operations
per unit of time

Procedure AbstractAlgorithm
1 Initialization();
2 while ! done do
3 Parallel_Work(); /* Application specific code, conflict-free */
4 while ! success do
5 current ← Read(AP);
6 new ← Critical_Work(current);
7 success ← CAS(AP, current, new);

Inputs of the analysis:
I Platform parameters: CAS and Read Latencies, in clock cycles
I Algorithm parameters:

I Critical Work and Parallel Work Latencies, in clock cycles
I Total number of threads

Aras AtalarThroughput Based Energy Efficiency Modeling of Lock-Free Data Structures 3 19



SettingsPp Pp

Output: Data structure throughput, i.e. number of successful operations
per unit of time

Procedure AbstractAlgorithm
1 Initialization();
2 while ! done do
3 Parallel_Work(); /* Application specific code, conflict-free */
4 while ! success do
5 current ← Read(AP);
6 new ← Critical_Work(current);
7 success ← CAS(AP, current, new);

Inputs of the analysis:
I Platform parameters: CAS and Read Latencies, in clock cycles
I Algorithm parameters:

I Critical Work and Parallel Work Latencies, in clock cycles
I Total number of threads

Aras AtalarThroughput Based Energy Efficiency Modeling of Lock-Free Data Structures 3 19



SettingsPp Pp

Output: Data structure throughput, i.e. number of successful operations
per unit of time

Procedure AbstractAlgorithm
1 Initialization();
2 while ! done do
3 Parallel_Work(); /* Application specific code, conflict-free */
4 while ! success do
5 current ← Read(AP);
6 new ← Critical_Work(current);
7 success ← CAS(AP, current, new);

Inputs of the analysis:
I Platform parameters: CAS and Read Latencies, in clock cycles
I Algorithm parameters:

I Critical Work and Parallel Work Latencies, in clock cycles
I Total number of threads

Aras AtalarThroughput Based Energy Efficiency Modeling of Lock-Free Data Structures 3 19



Example: Treiber’s Stack Pop operationPp Pp

cw = 50, threads = 8

4000

6000

8000

10000

12000

0 2000 4000 6000
Parallel Work (cycles)

T
hr

ou
gh

pu
t (

op
s/

m
se

c)

Case Constant Exponential Poisson

Aras AtalarThroughput Based Energy Efficiency Modeling of Lock-Free Data Structures 4 19



Executions Under Contention LevelsPp Pp

parallel work

successful retry

failed retry

Parallel work

Throughput

T0

T1

T2

T3

System

Aras AtalarThroughput Based Energy Efficiency Modeling of Lock-Free Data Structures 5 19



Executions Under Contention LevelsPp Pp parallel work

successful retry

failed retry

Parallel work

Throughput

T0

T1

T2

T3

System

Low contention

Aras AtalarThroughput Based Energy Efficiency Modeling of Lock-Free Data Structures 5 19



Executions Under Contention LevelsPp Pp parallel work

successful retry

failed retry

Parallel work

Throughput

T0

T1

T2

T3

System

T0

T1

T2

T3

System

Peak performance

Aras AtalarThroughput Based Energy Efficiency Modeling of Lock-Free Data Structures 5 19



Executions Under Contention LevelsPp Pp parallel work

successful retry

failed retry

Parallel work

Throughput

T0

T1

T2

T3

System

T0

T1

T2

T3

System

High contention

Aras AtalarThroughput Based Energy Efficiency Modeling of Lock-Free Data Structures 5 19



Impacting FactorsPp Pp

I Failed Retries

I Atomic CAS Conflicts

CAS
Expansion

Aras AtalarThroughput Based Energy Efficiency Modeling of Lock-Free Data Structures 6 19



AnalysesPp Pp

successful
CAS

useless
work Access cw expansion successful

CAS

slack time completion time

success periodcan be null

I The analyses are centered around a single variable Prl , the number
threads inside the retry loop

Aras AtalarThroughput Based Energy Efficiency Modeling of Lock-Free Data Structures 7 19



Average-Based ApproachPp Pp

I Throughtput: expectation of success period at a random time
I Relies on queueing theory (Little’s law) and focus on average

behaviour
sp
(
Prl
)
= pw/(P − Prl) (1)

I Assuming two modes of contention:
I Non-contended:

sp
(
Prl
)
= (rc + cw + cc + pw)/P = (rc + cw + cc)/Prl (2)

I Contended:
(i) Given Prl , calculate the expected expansion: e

(
Prl
)

(ii) Given Prl , calculate the slack time: st
(
Prl
)

Aras AtalarThroughput Based Energy Efficiency Modeling of Lock-Free Data Structures 8 19



CAS Expansion and Slack TimePp Pp

Read & Critical Work Previously
expanded CASExpansion

CAS

I Input: Prl threads already in the retry loop
I A new thread attempts to CAS during the retry

(Read + Critical_Work + e
(
Prl
)
+ CAS), within a probability h:

 e
(
Prl + h

)
= e

(
Prl
)
+ h ×

∫ retry

0

cost(t)
retry dt.

I Assume a thread has equal probability to be anywhere in the retry
loop

st
(
Prl
)
= retry/(Prl + 1) (3)

Aras AtalarThroughput Based Energy Efficiency Modeling of Lock-Free Data Structures 9 19



Unified Solving and Throughput EstimatePp Pp

I Unified Solving:

rc + cw + cc
Prl

=
Prl + 2
Prl + 1

(
cw + e

(
Prl
))

+ 2cc, (4)

The system switches from being non-contended to being contended
at Prl = P(0)

rl , where

P(0)
rl =

cc + cw − rc
2(cw + 2cc)

(√
1+ 4(rc + cw + cc)(cw + 2cc)

(cc + cw − rc)2 − 1
)

.

I Fixed point iteration on Prl to find the value that obeys Little’s Law

Aras AtalarThroughput Based Energy Efficiency Modeling of Lock-Free Data Structures 10 19



Stochastic ApproachPp Pp

I Analysis based on Markov Chains and stochastic sequence of success periods
results in the throughput estimate

I Prl , just after a successful CAS, renders the state of the system

CAS st (i) CAS cw e (i) CAS

0 new thread k + 1 new threads

at least 1
new thread

Read cw e (i) CAS

Internal
execution

Eint

Eext

Aras AtalarThroughput Based Energy Efficiency Modeling of Lock-Free Data Structures 11 19



Deterministic ApproachPp Pp

I A tight analysis when cw and pw are constants
I Properties minimize slack time and conflicts

Aras AtalarThroughput Based Energy Efficiency Modeling of Lock-Free Data Structures 12 19



Throughput Estimation: Synthetic testsPp Pp

cw = 1 cw = 3

cw = 6 cw = 20

0e+00

5e+06

1e+07

0.0e+00

2.5e+06

5.0e+06

7.5e+06

1.0e+07

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

0 30 60 90 120 0 50 100 150

0 50 100 150 200 0 200 400
Parallel Work (units of work)

T
hr

ou
gh

pu
t (

op
s/

se
c)

, F
ai

lu
re

s 
(m

ic
ro

)

Metric Throughput Failures

Case Average Bound Constructive Real Constant Real Poisson

Aras AtalarThroughput Based Energy Efficiency Modeling of Lock-Free Data Structures 13 19



Throughput Estimation: Synthetic testsPp Pp

cw = 50, threads = 8 cw = 200, threads = 8

cw = 600, threads = 8 cw = 1600, threads = 8

4000

6000

8000

10000

12000

4000

6000

8000

2000

3000

4000

1000

1500

0 2000 4000 6000 0 2500 5000 7500 10000

0 5000 10000 15000 20000 0 10000 20000 30000 40000
Parallel Work (cycles)

T
hr

ou
gh

pu
t (

op
s/

m
se

c)

Case Low High Average Real

Aras AtalarThroughput Based Energy Efficiency Modeling of Lock-Free Data Structures 14 19



Power Estimation

Aras AtalarThroughput Based Energy Efficiency Modeling of Lock-Free Data Structures 15 19



General Power ModelPp Pp Power Estimation

Power split into:
I Static part: cost of turning the machine on
I Activation part: fixed cost for each socket in use
I Dynamic part: supplementary cost depending on the running

application
In accordance with the RAPL energy counters, each part further
decomposed per-component:

I Memory
I CPU
I Uncore

Finally,

Pow =
∑

X∈{M,C ,U}

(
Pow (stat,X) + Pow (active,X) + Pow (dyn,X)

)

Aras AtalarThroughput Based Energy Efficiency Modeling of Lock-Free Data Structures 16 19



CPUPpPp Power Estimation

I Dynamic memory and uncore power is proportional to the intensity
of main memory accesses and remote accesses

I Each thread mapped on a dedicated core

Pow (C)
total = Threads × Pow (C)

I Dyn. Cpu Power: IPC (different for the retry loop and parallel work)
I Time segmentation (r : ratio of time spent in retry loop)

Pow (C) = r × Pow (C)
rl + (1 − r) × Pow (C)

ps

I Two samples are used to obtain Pow (C)
rl and Pow (C)

ps

Aras AtalarThroughput Based Energy Efficiency Modeling of Lock-Free Data Structures 17 19



Treiber’s Stack Pop operationPp Pp Power Estimation

●

●●
●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●
●

●
●

●
●

●
●

●●
●

●●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●
●

●●

●

●
●

●
●

●

●

●
●

●
●
●

●

●
●
●

●

●

●

●
●

●●

●

●
●
●

●
●●

●
●

●●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●●

●
●

●●
●

●

●

●

●

●●
●

●●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●●

●

●●

●

●

●

●

●●
●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●
●

●

●

●
●
●

●

●

●

●●

●

●
●●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●
●●

●
●

●

●
●●

●

●
●

●
●

●

●●

●
●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●
●

●●

●

●

●

●
●
●

●●

●●
●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●●
●

●

●●●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●●

●

●

●
●●

●

●

●●
●

●

●

●
●

●
●

●

●
●●

●

●●
●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●
●●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●●

●
●
●
●
●

●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●●

●●

●●

●

●

●

●●●
●●

●
●

●●●

●

●
●
●

●●

●

●●

●●

●
●

●

●

●
●

●

●
●●

●

●

●●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●
●●

●

●

●●

●

●
●

●●
●

●
●

●

●
●

●
●
●
●
●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●●

●

●

●
●

●

●●
●
●

●
●

●

●●
●

●●●

●●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●●●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●
●

●

●●
●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●●●
●

●

●

●
●

●●

●
●●●

●●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●
●

●●

●●

●

●
●

●

●

●
●●

●

●

●●

●

●

●

●●
●

●
●●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●
●
●

Distribution = Constant Distribution = Exponential Distribution = Normal

0

10

20

30

40

50

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Parallel Work (cycles)

A
ve

ra
ge

 P
ow

er
 (

W
at

ts
)

Frequency ● ● ●1.2 Ghz 2.3 Ghz 3.4 Ghz

Aras AtalarThroughput Based Energy Efficiency Modeling of Lock-Free Data Structures 18 19



ConclusionPp Pp Power Estimation

I Three approaches based on the estimation of success period

I Validate our model using synthetic tests and several reference data
structures

I Power Model for CPU platform

I Energy efficiency of lock-free data structures based on the ratio of
time spent in retry loops

Aras AtalarThroughput Based Energy Efficiency Modeling of Lock-Free Data Structures 19 19


	Power Estimation

	anm0: 
	0.EndLeft: 
	0.StepLeft: 
	0.PauseLeft: 
	0.PlayLeft: 
	0.PlayPauseLeft: 
	0.PauseRight: 
	0.PlayRight: 
	0.PlayPauseRight: 
	0.StepRight: 
	0.EndRight: 
	0.Minus: 
	0.Reset: 
	0.Plus: 


