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MotivationPp Pp

I Why multi-core:
I Heat dissipation, memory bottleneck, physical limits
I Multi-core challenges: Synchronization, load balance, etc.

I Lock-free Data Structures:
I Lock-Freedom: Non-blocking system-wide progress guarantee
I Optimistic Conflict Control
I Limitations of their lock-based counterparts: deadlocks, convoying

and programming flexibility
I High scalability

I Major optimization criterion (road to Exascale, battery
lifetime for embedded systems, etc.) decomposed into:

I Power
I Throughput (ops/unit of time)
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SettingsPp Pp

Output: Data structure throughput, i.e. number of successful operations
per unit of time

Procedure AbstractAlgorithm
1 Initialization();
2 while ! done do
3 Parallel_Work(); /* Application specific code, conflict-free */
4 while ! success do
5 current ← Read(AP);
6 new ← Critical_Work(current);
7 success ← CAS(AP, current, new);

Inputs of the analysis:
I Platform parameters: CAS and Read Latencies, in clock cycles
I Algorithm parameters:

I Critical Work and Parallel Work Latencies, in clock cycles
I Total number of threads
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Example: Treiber’s Stack Pop operationPp Pp

cw = 50, threads = 8
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Executions Under Contention LevelsPp Pp

parallel work

successful retry

failed retry

Parallel work

Throughput

T0

T1

T2

T3

System
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Impacting FactorsPp Pp

I Failed Retries

I Atomic CAS Conflicts

CAS
Expansion

Aras AtalarThroughput Based Energy Efficiency Modeling of Lock-Free Data Structures 6 19



AnalysesPp Pp

successful
CAS

useless
work Access cw expansion successful

CAS

slack time completion time

success periodcan be null

I The analyses are centered around a single variable Prl , the number
threads inside the retry loop
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Average-Based ApproachPp Pp

I Throughtput: expectation of success period at a random time
I Relies on queueing theory (Little’s law) and focus on average

behaviour
sp
(
Prl
)
= pw/(P − Prl) (1)

I Assuming two modes of contention:
I Non-contended:

sp
(
Prl
)
= (rc + cw + cc + pw)/P = (rc + cw + cc)/Prl (2)

I Contended:
(i) Given Prl , calculate the expected expansion: e

(
Prl
)

(ii) Given Prl , calculate the slack time: st
(
Prl
)
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CAS Expansion and Slack TimePp Pp

Read & Critical Work Previously
expanded CASExpansion

CAS

I Input: Prl threads already in the retry loop
I A new thread attempts to CAS during the retry

(Read + Critical_Work + e
(
Prl
)
+ CAS), within a probability h:

 e
(
Prl + h

)
= e

(
Prl
)
+ h ×

∫ retry

0

cost(t)
retry dt.

I Assume a thread has equal probability to be anywhere in the retry
loop

st
(
Prl
)
= retry/(Prl + 1) (3)
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Unified Solving and Throughput EstimatePp Pp

I Unified Solving:

rc + cw + cc
Prl

=
Prl + 2
Prl + 1

(
cw + e

(
Prl
))

+ 2cc, (4)

The system switches from being non-contended to being contended
at Prl = P(0)

rl , where

P(0)
rl =

cc + cw − rc
2(cw + 2cc)

(√
1+ 4(rc + cw + cc)(cw + 2cc)

(cc + cw − rc)2 − 1
)

.

I Fixed point iteration on Prl to find the value that obeys Little’s Law
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Stochastic ApproachPp Pp

I Analysis based on Markov Chains and stochastic sequence of success periods
results in the throughput estimate

I Prl , just after a successful CAS, renders the state of the system

CAS st (i) CAS cw e (i) CAS

0 new thread k + 1 new threads

at least 1
new thread

Read cw e (i) CAS

Internal
execution

Eint

Eext
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Deterministic ApproachPp Pp

I A tight analysis when cw and pw are constants
I Properties minimize slack time and conflicts
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Throughput Estimation: Synthetic testsPp Pp
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Throughput Estimation: Synthetic testsPp Pp
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Power Estimation
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General Power ModelPp Pp Power Estimation

Power split into:
I Static part: cost of turning the machine on
I Activation part: fixed cost for each socket in use
I Dynamic part: supplementary cost depending on the running

application
In accordance with the RAPL energy counters, each part further
decomposed per-component:

I Memory
I CPU
I Uncore

Finally,

Pow =
∑

X∈{M,C ,U}

(
Pow (stat,X) + Pow (active,X) + Pow (dyn,X)

)
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CPUPpPp Power Estimation

I Dynamic memory and uncore power is proportional to the intensity
of main memory accesses and remote accesses

I Each thread mapped on a dedicated core

Pow (C)
total = Threads × Pow (C)

I Dyn. Cpu Power: IPC (different for the retry loop and parallel work)
I Time segmentation (r : ratio of time spent in retry loop)

Pow (C) = r × Pow (C)
rl + (1 − r) × Pow (C)

ps

I Two samples are used to obtain Pow (C)
rl and Pow (C)

ps
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Treiber’s Stack Pop operationPp Pp Power Estimation
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ConclusionPp Pp Power Estimation

I Three approaches based on the estimation of success period

I Validate our model using synthetic tests and several reference data
structures

I Power Model for CPU platform

I Energy efficiency of lock-free data structures based on the ratio of
time spent in retry loops
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